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LETTER TO THE EDITOR 

Computer simulation of a two-dimensional type-I1 
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t Department of Physics, Faculty of Science. Nagoya University, Nagoya 464-01, Japan 
t Department of Applied Physics. Faculty of Engineering, Nagoya University. Nagoya 
464.01, Japan 

Received 12 November 1990 

Abstract. We study the time-dependent behaviouroftype-ll superconductors in anexternal 
magnetic field. Based on the time-dependent Cinzburg-Landau equation. simulations for 
several situations are performed in tug dimensions in order that we might discus the 
dynamical behaviour of magnetic flux structures. 

With the discovery of high-T, superconductors, solving the Ginzburg-Landau (GL) 
equation has recently attacted much attention i n  the discussion of magnetic flux struc- 
tures [l]. Severalcomputational attemptsat a solution have heen made [2-5] .  However, 
none of the previous authors has directly dealt with the time-dependent Ginzburg- 
Landau  equationsin sin the presenceofanexternalmagnetic field. Thusour primary 
concern here is a visualization of the dynamical behaviour of type-I1 superconductors, 
based on the TDGL equations. 

The dynamics of superconductors is phenomenologically described by the following 
TDGL equations [6]: 

where A , A ,  VI andjare  the complex order parameter, vector potential, scalar potential 
and current density, respectively. Here D and u are the normal state diffusion constant 
and conductivity, respectively. The temperature-dependent coherence length is j and 
the temperature-dependent magnetic penetration depth is 1. In the case where electric 
effects, such as transport current, are neglected, the following equations are added to 
the above 16): 

j = (c/4n)V X V x A 

E = -(I/ C) aA/dt - VW 
(3) 

(4) 
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B = V X A  ( 5 )  

A-A-Vx *+ ty f U / C )  axiat (6) 

I t  should be pointed out that a gauge transformation of the potentials 

accompanied by a phase definition of A ,  

A-Aexp - I -x  i ) (7) 

leavesequations (1)-(5) unchanged. This means that the physical results are independent 
ofthechoiceofX.Thus,inordertomake thescalarpotentialzero,wesetdX/ar= -cy. 

These equations can be rescaled to  measure 
r in units of / = &‘a (8) 
I in units of rGL/12 (9 )  
A in units of v‘%& (10) 
11’ in units of h/2etGL (11) 

rGL = nh/Sk,(r, - T )  (12) 

K = nit (13) 

with 

where a in equation (8) is a positive constant and is determined later so as to make the 
numerical calculation efficient, ff, is the critical magnetic field, and T, the critical 
temperature. Then, in normalized dimensionless units the above equations of motion 
can be rewritten as 

aA/ar  = -(l/l2)[(aV/i - A/a)’A + (\AI’ - l)A] 

aA/a f=  (a2/2i)(A*VA - AVA*) - IA\*A - K2a2V x V X A .  

(14) 

(15) 
In the following discussion we consider a flat square plate of type-I1 superconductor 
(K > l i d )  in the x-y plane with a magnetic field incident in the z-direction. We also 
assume that the plate is surrounded by the insulator. We are interested in  field con- 
figurationsinvariant under a translationalongthez-axis. Thus, all the fieldsdependonly 
on the x-  and y-coordinates, and the third components of the fields are neglected. 

Now we carry out two-dimensional computer simulations of the TDGL equations on 
an N 2  square lattice. In our simulations we use the simple Euler method with the time 
stepAr=O.OS,thespacestepAx= A y =  l,anda=2,Thegridsizeis6OX 60(N=60)  
and thus the space size is 305 X 305 in physical units. We also set K = 2. Note that 
in these normalized units the upper critical field HCz = 1 and the lower critical field 
ff,, In K/2Kz = 0.087. 

The boundary conditions (BC) are assumed to be as follows; 

(aV,’i -Ala)  AIn = 0 (16) 

C X A = H ,  (17) 
where thc index n in equation (16) denotes the normal direction on the boundary. The 
BC (16) means that the system considered here is surrounded by the insulator, while the 
BC (17) means that the vector potential on the boundary is determined by the external 
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Figurel.TimeevolutionsofrhespatialpatternofIA1 forh, = 0. Thcprofilesofthemagnitude 
of IAI are shown at various times. The maximum value is I .O and the minimum value is 0.01 
in this time series. 

magnetic field H e =  he@, y ) i ,  where i is the unit vector along the z-axis. Initially at each 
lattice site both real and imaginary parts of A are chosen to be parts of a Gaussian 
random number with average 0 and variance 0.01, while we set A = (Ar,  A,) = (0,O). 

Before studying the complicated situation, we numerically check the range of validity 
of our simulation using the two analytic stationary solutions of the TDGL equations. One 
is a one-vortex solution at  h, = H,,  [6] ,  and the other is a well-known Abrikosov flux 
lattice solution at h, s H,, [7]. We have numerically found that the one-vortex solution 
is stable, while the Abrikosov solution is unfortunately unstable or destroyed in our 
simulation. Taking into account the Abrikosov assumption of an infinite system, the 
finiteness of the present simulation is thought to cause this undesirable situation. In 
order to avoid this, we need to simulate a fairly large system using a more complicated 
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Figure 2.  Time evolulions of spatial pattern of E: for h, = 0. The profiles of the magnitude 
of B: are shown at various times. The maximum value i s  0.23 and the minimum value i s  
-0.23 in this lime series. 

difference scheme and methods of saving computational time, such as an introduction 
of thermal fluctuations. Because of the limitation of our computer system. and as the 
first step of our work, we carry on in the present manner which is thought to be valid at 
least for h, < Hc2. 

At first we study a case for h, = 0.  In this case a configuration with IAl = 1 and no 
magnetic field is known to be stable. In figures 1 and 2 the time developments of the 
patterns of A and B ,  are shown, respectively, where B,  is defined by B, = JA,/Jy 
- JA,/Jr. As is expected, the system asymptotically approaches the global uniform 
state. Note that in this case localized magnetic field configurations exist in the system. 
Hereafter a localized magnetic configuration with B, along the positive (negative) z- 
direction is called an (anti-) vortex. Typical patterns of current densityj near vortices 
are shown in figure 3. Note that we have numerically checked that each vortex con- 
figuration is quantized and thus that its magnetic flux is equal to the elementary flux 
quantum, @,, E hc/2e. From these figures we find that the removal of a vortex from the 
edge and a pair annihilation of a vortex and anti-vortex take the system to the uniform 
state. This result for the case without the external field is similar to that of a previous 
simulation where the vector potential A was completely neglected 181. 

Next, we study a case for h, = 0.2. In this case, H, ,  < h, < H,,, no detailed analytic 
discussion exists. However, it is expected from analogy with the Abrikosov discussion 
that a state with a regular vortex lattice is stable. In figure 4 we can see that initially 
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Figure 3. Spatial patterns of j far h. = 0 at I = 150 and 4wO. The direction of an arrow 
denotes the direction of a current Row. Moreover, each arrow’s size and shade correspond 
lo the amplitude of current. The maximum value is 0.05 and the minimum value is 0 in this 
time series. 

Figure4. Time evolutions of the spatial pattern of /AI for h, = 0.2. The Contour lines of IAl 
withincerval0.I arenhownatr= 1000and30~10. 

random positions of vortices tend to become regular. We have numerically checked that 
the pattern at f = 3000 is rarely changed even after long time calculations. As far as we 
know, this is the first simulation to have visualized the time-dependent behaviour of a 
vortex lattice regularization. 

Finally we study the effects of impurities on the vortex motion. Here we simply 
represent an impurity at position (x, , ,  y o )  such that at  this position the value of IA(xo, 
yc)i is forced to be zero. In the following, the analytic one-vortex solution is chosen as 
the initial state, and a position (20,30) is set as its starting position. In figure 5 we show 
the trajectories of a vortex for various positions of one impurity with h, = 0. If there is 
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Figure 5. Trajectories of a vortex according to 
various impurity positions with h. = 0. These tra- 
jectories are seen from the impurity position, as 
shown i n  the inset. where the symbol 'v' denotes 
the vwex  a.~~.,:I,:,.t~e..~.mpuritu. The trajectories 
C E  end in pinnings. 

no impurity. the vortex is removed away from the system, because h, = 0. This case is 
shown in figure 5 by trajectory A. We find the existence of a pinning threshold between 
trajectories B and C. 

In summary we have caried out several simulations of the TDGL equations and 
reproduced the typical pattern evolutions of h and E,. We have found that the present 
direction of research may provide us with a useful tool in studying the time-dependent 
behaviour of superconductors. Studying the effects of random impurities, transport 
current and thermal fluctuations, as well as the intermediate state in type-I super- 
conductors. is interesting and they still remain open problems. These problems could 
be discussed within the present framework [9 ] .  We also expect that an essence of the 
time-dependent behaviour of the magnetic flux structures in high-T, superconductors 
can be caught through the present simulation. 

The authors are grateful to Professor S Maekawa for a number of valuable discussions. 
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